动物世界 | 世界之最 | 植物世界 | 人与动物 | 猫科动物世界全集 - 人与动物和谐相处,保护动物世界,从身边做起.
你的位置:首页 > Python教程 » 正文

Python数据分析系列一:决策树算法原理及python3.6

2018-05-27 | 人围观 | 评论:暂无评论

决策树模型与学习

决策树(decision tree)算法基于特征属性进行分类,其主要的优点:模型具有可读性,计算量小,分类速度快。

决策树算法包括了由Quinlan提出的ID3与C4.5,Breiman等提出的CART。其中,C4.5是基于ID3的,对分裂属性的目标函数做出了改进。

决策树模型

决策树是一种通过对特征属性的分类对样本进行分类的树形结构,包括有向边与三类节点:

1、根节点(root node),表示第一个特征属性,只有出边没有入边;

2、内部节点(internal node),表示特征属性,有一条入边至少两条出边

3、叶子节点(leaf node),表示类别,只有一条入边没有出边。

上图给出了(二叉)决策树的示例。决策树具有以下特点:

1、对于二叉决策树而言,可以看作是if-then规则集合,由决策树的根节点到叶子节点对应于一条分类规则;

2、分类规则是互斥并且完备的,所谓互斥即每一条样本记录不会同时匹配上两条分类规则,所谓完备即每条样本记录都在决策树中都能匹配上一条规则。

3、分类的本质是对特征空间的划分,如下图所示,

决策树学习

决策树学习的本质是从训练数据集中归纳出一组分类规则[2]。但随着分裂属性次序的不同,所得到的决策树也会不同。如何得到一棵决策树既对训练数据有较好的拟合,又对未知数据有很好的预测呢?

首先,我们要解决两个问题:

1、如何选择较优的特征属性进行分裂?每一次特征属性的分裂,相当于对训练数据集进行再划分,对应于一次决策树的生长。ID3算法定义了目标函数来进行特征选择。

2、什么时候应该停止分裂?有两种自然情况应该停止分裂,一是该节点对应的所有样本记录均属于同一类别,二是该节点对应的所有样本的特征属性值均相等。但除此之外,是不是还应该其他情况停止分裂呢?

决策树算法

特征选择

特征选择指选择最大化所定义目标函数的特征。下面给出如下三种特征(Gender, Car Type, Customer ID)分裂的例子:

图中有两类类别(C0, C1),C0: 6是对C0类别的计数。直观上,应选择Car Type特征进行分裂,因为其类别的分布概率具有更大的倾斜程度,类别不确定程度更小。

为了衡量类别分布概率的倾斜程度,定义决策树节点tt的不纯度(impurity),其满足:不纯度越小,则类别的分布概率越倾斜;下面给出不纯度的的三种度量:

其中,p(ck|t)表示对于决策树节点tt类别ckck的概率。这三种不纯度的度量是等价的,在等概率分布是达到最大值。

为了判断分裂前后节点不纯度的变化情况,目标函数定义为信息增益(information gain):

I(⋅)对应于决策树节点的不纯度,parent表示分裂前的父节点,N表示父节点所包含的样本记录数,ai表示父节点分裂后的某子节点,N(ai)为其计数,n为分裂后的子节点数。

特别地,ID3算法选取熵值作为不纯度I(⋅)的度量,则

c指父节点对应所有样本记录的类别;A表示选择的特征属性,即ai的集合。那么,决策树学习中的信息增益Δ等价于训练数据集中类与特征的互信息,表示由于得知特征A的信息训练数据集c不确定性减少的程度。

在特征分裂后,有些子节点的记录数可能偏少,以至于影响分类结果。为了解决这个问题,CART算法提出了只进行特征的二元分裂,即决策树是一棵二叉树;C4.5算法改进分裂目标函数,用信息增益比(information gain ratio)来选择特征:

因而,特征选择的过程等同于计算每个特征的信息增益,选择最大信息增益的特征进行分裂。

此即回答前面所提出的第一个问题(选择较优特征)。ID3算法设定一阈值,当最大信息增益小于阈值时,认为没有找到有较优分类能力的特征,没有往下继续分裂的必要。

根据最大表决原则,将最多计数的类别作为此叶子节点。即回答前面所提出的第二个问题(停止分裂条件)。

决策树生成

ID3算法的核心是根据信息增益最大的准则,递归地构造决策树;算法流程如下:

1、如果节点满足停止分裂条件(所有记录属同一类别 or 最大信息增益小于阈值),将其置为叶子节点;

2、选择信息增益最大的特征进行分裂;

3、重复步骤1-2,直至分类完成。

C4.5算法流程与ID3相类似,只不过将信息增益改为信息增益比。

决策树剪枝

过拟合

生成的决策树对训练数据会有很好的分类效果,却可能对未知数据的预测不准确,即决策树模型发生过拟合(overfitting)——训练误差(training error)很小、泛化误差(generalization error,亦可看作为test error)较大。

下图给出训练误差、测试误差(test error)随决策树节点数的变化情况:

可以观察到,当节点数较小时,训练误差与测试误差均较大,即发生了欠拟合(underfitting)。

当节点数较大时,训练误差较小,测试误差却很大,即发生了过拟合。只有当节点数适中是,训练误差居中,测试误差较小;对训练数据有较好的拟合,同时对未知数据有很好的分类准确率。

发生过拟合的根本原因是分类模型过于复杂,可能的原因如下:

1、训练数据集中有噪音样本点,对训练数据拟合的同时也对噪音进行拟合,从而影响了分类的效果;

2、决策树的叶子节点中缺乏有分类价值的样本记录,也就是说此叶子节点应被剪掉。

剪枝策略

为了解决过拟合,C4.5通过剪枝以减少模型的复杂度。[2]中提出一种简单剪枝策略,通过极小化决策树的整体损失函数(loss function)或代价函数(cost function)来实现,决策树T的损失函数为:

其中,C(T)C(T)表示决策树的训练误差,αα为调节参数,|T||T|为模型的复杂度。当模型越复杂时,训练的误差就越小。上述定义的损失正好做了两者之间的权衡。

如果剪枝后损失函数减少了,即说明这是有效剪枝。具体剪枝算法可以由动态规划等来实现。
 

python3.6代码实现

#!/usr/bin/env python
# coding=utf-8

import numpy as np
from sklearn import tree
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import classification_report
from sklearn.cross_validation import train_test_split
import pydot
from sklearn.externals.six import StringIO

def loadDataSet():
    data = []
    label = []
    with open('D:python/fat.txt') as file:
        for line in file:
            tokens = line.strip().split(' ')
            data.append([float(tk) for tk in tokens[:-1]])
            label.append(tokens[-1])
    x = np.array(data)
    print('x:')
    print(x)
    label = np.array(label)
    y = np.zeros(label.shape)
    y[label == 'fat'] = 1
    print('y:')
    print(y)
    return x, y

def decisionTreeClf():
    x, y = loadDataSet()

    # 拆分数据集和训练集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
    print('x_train:');
    print(x_train)
    print('x_test:');
    print(x_test)
    print('y_train:');
    print(y_train)
    print('y_test:');
    print(y_test)
    # 使用信息熵作为划分标准
    clf = tree.DecisionTreeClassifier(criterion='entropy')
    print(clf)
    clf.fit(x_train, y_train)
    dot_data = StringIO() 
    with open("iris.dot", 'w') as f: 
        f=tree.export_graphviz(clf, out_file=f)
        tree.export_graphviz(clf, out_file=dot_data)
        graph = pydot.graph_from_dot_data(dot_data.getvalue())  
        graph[0].write_pdf("ex.pdf")  
#         Image(graph.create_png())
    # 打印特征在分类起到的作用性
    print(clf.feature_importances_)

    # 打印测试结果
    answer = clf.predict(x_train)
    print('x_train:')
    print(x_train)
    print('answer:')
    print(answer)
    print('y_train:')
    print(y_train)
    print('计算正确率:')
    print(np.mean(answer == y_train))

    # 准确率与召回率
    precision, recall, thresholds = precision_recall_curve(y_train, clf.predict(x_train)
)
    answer = clf.predict_proba(x)[:, 1]
    print(classification_report(y, answer, target_names=['thin', 'fat']))

decisionTreeClf()
# print('ll')
标签:

相关内容推荐: